
Paraphrase Generation by Learning How to Edit from Samples

Amirhossein Kazemnejad

Iran University of Science
and Technology / Tehran, Iran
a kazemnejad@comp.iust.ac.ir

Mohammadreza Salehi

Sharif University
of Technology / Tehran, Iran
mrezasalehi@ce.sharif.edu

Mahdieh Soleymani Baghshah

Sharif University
of Technology / Tehran, Iran

soleymani@sharif.edu

Abstract

Neural sequence to sequence models have pro-
vided a viable approach for paraphrase gener-
ation. Despite promising results, paraphrases
generated by these models mostly suffer from
lack of quality. In order to address this prob-
lem, we introduce a retrieval-based method for
paraphrase generation by proposing a novel ed-
itor module. Our model retrieves a paraphrase
pair similar to the input sentence from a pre-
defined index and learns to edit the input using
the extracted relations between the retrieved
pair of sentences. In order to have a fine-
grained control over the editing process, we
introduce the new concept of Micro Edit Vec-
tors. Our model both extracts and uses these
vectors by leveraging the attention mechanism
in the Transformer architecture. Experimental
results show the superiority of our paraphrase
generation method in terms of both automatic
metrics and human evaluation considering rel-
evancy, grammar, and diversity of generated
paraphrases.

1 Introduction

Paraphrases are texts conveying the same meaning
while using different words. Paraphrase generation
is a key technique in Natural Language Processing
(NLP) that has many applications such as text sum-
marization, question answering, semantic parsing,
and information retrieval Cao et al. (2017); Fader
et al. (2014); Berant and Liang (2014).

Early work on paraphrasing were usually based
on rule-based or statistical machine translation
methods Bannard and Callison-Burch (2005).
With the advances of neural sequence-to-sequence
(Seq2Seq) framework in different NLP tasks, espe-
cially machine translation, an increasing amount of
literature have also applied Seq2Seq models to the
task of paraphrase generation in the past few years
Prakash et al. (2016); Gupta et al. (2018); Li et al.
(2018).

Retreiver Training Corpus

Step 1: Find the most similar pair

Edit
Provider

Edit
Performer

Step 2: Generate the paraphrase

Editor

How can I increase my presence of mind ?
What is best way to increase presence of mind ?

How can I overcome absence of mind ?

what is the best way to overcome absence of mind ?

Figure 1: An overview of the proposed model. This
model computes a set of edit vectors based on the
retrieved pair and applies these edits to the input se-
quence x to generate its paraphrase.

Although the proposed Seq2Seq methods for
paraphrase generation have shown promising re-
sults, they are not yet as dominant as models in
neural machine translation since the available train-
ing data for paraphrasing is scarce and domain-
specific Wang et al. (2019). In fact, the necessity
to generate sequences from scratch, which is a ma-
jor drawback of traditional Seq2Seq models Guu
et al. (2018), magnifies itself when dealing with
scarce training data. Thus, one can expect that the
model will not be trained well and face challenges
in generating diverse outputs.

Although retrieval-based text generation has
been evaluated recently in Guu et al. (2018);
Hashimoto et al. (2018); Wu et al. (2019) as a rem-
edy for this problem, to the best of our knowledge,
there is no previous study exploring the use of this
approach in paraphrase generation. Moreover, none
of the existing methods in this context such as Guu

et al. (2018); Wu et al. (2019); Hashimoto et al.
(2018) have focused on learning how to extract ed-
its from the retrieved pair of sentences. Indeed,
Guu et al. (2018); Wu et al. (2019) computes a
single edit vector heuristically by concatenating
the weighted sum of the inserted word embeddings
and the weighted sum of deleted word embeddings.
Moreover, Hashimoto et al. (2018) only uses a stan-
dard Seq2Seq model to edit the retrieved sentence.

In this paper, we present an effective retrieval-
based approach for paraphrase generation by
proposing a novel editor model. Our method can
be summarized as follows: Given an input sentence
x, the model first retrieves a similar sentence p and
its associated paraphrase q from the training data.
Then, by getting x and (p, q), the editor both learns
how to extract the fine-grained relations between
p and q as a set of edits, and also learns when and
how to use these extracted edits to paraphrase x.
By incorporating the retrieved pairs into the edit-
ing process, we invigorate our model with a non-
parametric memory which enables it to produce
non-generic and new outputs. Both the retriever
and editor components of our method are modeled
by deep networks. We employ the Transformer
architecture Vaswani et al. (2017) as the model
backbone and utilize its attention mechanism as an
effective tool to apply edits in a selective manner.

Our main contributions can be listed as follows:

• We propose the Fine-grained Sample-based
Editing Transformer (FSET) model. It con-
tains a novel editor that can be used in a
retrieval-based framework for paraphrase gen-
eration. This editor learns how to discover
the relation between a pair of paraphrase sen-
tences as a set of edits and transforms an input
sentence according to these edits. It is worth
noting that the set of edits is learned in an
end-to-end manner as opposed to Guu et al.
(2018); Wu et al. (2019) that computes the
edit vector heuristically.

• For the first time, we utilize the Transformer
as an efficient fully-attentional architecture for
the task of retrieval-based text generation.

• Experimentally, we compare our method
against the recent paraphrase generation meth-
ods and also against retrieval-based text gen-
eration methods that have been introduced re-
cently. Both of the quantitative and qualitative
results show the superiority of our model.

2 Related Work

2.1 Neural paraphrase generation

Prakash et al. (2016) was the first work that adapted
a neural approach to paraphrase generation with
a residual stacked LSTM network. Gupta et al.
(2018) combined a variational auto-encoder with a
Seq2Seq LSTM model to generate multiple para-
phrases for a given sentence. Li et al. (2018) pro-
posed a model in which a generator is first trained
on the paraphrasing dataset and then is fine-tuned
by using reinforcement learning techniques. Cao
et al. (2017) utilized separate decoders for copying
and rewriting as the two main writing modes in
paraphrasing. Mallinson et al. (2017) addressed
paraphrasing with bilingual pivoting on multiple
languages in order to better capture different as-
pects of the source sentence. Iyyer et al. (2018) pro-
posed a method to generate syntactically controlled
paraphrases and use them as adversarial examples.
Chen et al. (2019) addressed the same problem
but the syntax is controlled by a sentence exem-
plar. Kajiwara (2019) proposed a model which
first identifies a set of words to be paraphrased and
then generates the output by using a pre-trained
paraphrase generation model. Wang et al. (2019)
proposed a Transformer-based model which uti-
lizes structured semantic knowledge to improve the
quality of paraphrases. Kumar et al. (2019) modi-
fied the beam search algorithm with a sub-modular
objective function to make the generated set of para-
phrases syntactically diverse. Li et al. (2019) de-
composed paraphrasing into sentential and phrasal
levels and employed separate Transformer-based
models for each of these levels.

2.2 Retrieval-based text generation

Retrieval-based text generation has received much
attention in the last few years. Song et al. (2016);
Wu et al. (2019) augmented Seq2Seq generation-
based models with retrieval frameworks to make
the dialog responses more meaningful and non-
generic. Gu et al. (2017) utilized a search engine
to retrieve a set of source-translation pairs from the
training corpus, both at train and test time, and use
them as a guide to translate a given query. Guu
et al. (2018) proposed the neural editor model for
unconditional text generation which produces a
new sentence by editing a retrieved prototype using
an edit vector. Hashimoto et al. (2018) proposed a
task-specific retriever using the variational frame-
work to generate complex structured outputs such

as Python code. This work, however, does not have
any novelty in the editor’s architecture and uses
a standard Seq2Seq model with the attention and
copy mechanism Hashimoto et al. (2018).

3 Proposed Approach

Let D = {xn, yn}Nn=1 denotes a dataset where xn
is a sequence of words and yn is its target para-
phrase. In the paraphrasing task, our goal is to
find the set of parameters of the model that max-
imizes

QN
n=1 pmodel(yn|xn). Figure 1 illustrates

the overview of our proposed model which is com-
posed of a Retriever and an Editor. Given an input
sequence x, the retriever first finds a paraphrase
pair (p, q) from the training corpus based on sim-
ilarity of x and p. Then, the editor utilizes the
retrieved pair (p, q) to paraphrase x. We discuss
the details in the following subsections.

3.1 Retriever

The goal of the retriever module is to select the para-
phrase pairs (from the training corpus) that are sim-
ilar to the input sequence x. In order to do that, the
retriever finds a neighborhood set N (x) consisting
of the K most similar source sentences {pk}Kk=1 to
x and their associated paraphrases {qk}Kk=1 (K is
a hyper-parameter of the model). To compute the
similarity of sentences, we first embed them em-
ploying the pre-trained transformer-based sentence
encoder proposed by Cer et al. (2018). The simi-
larity is then calculated by using cosine similarity
measure in the resulted embedding space. We call
this retriever as General Retriever throughout the
paper. Note that using a pre-trained model can help
us to alleviate the scarcity problem of the training
data available for paraphrasing1. In order to search
for the similar sentences to an input sequence effi-
ciently, we use the FAISS software package John-
son et al. (2017) to create a fast search index from
the sentences in the training corpus. We would also
pre-compute the neighborhood set of each source
sentence in the training set, so at the training time,
our model just needs to sample one of the pairs
in the neighborhood set uniformly and feed it as
an input to the editor module. The probability of
retrieving a pair can thus be stated as

p((p, q)|x) = 1

K
1[(p, q) 2 N (x)]. (1)

1Pre-trained model is available
at https://tfhub.dev/google/

universal-sentence-encoder-large/3

Note that the same procedure also holds for the
test time and the retriever computes N (x) so the
model can sample any one of the pairs in N (x) to
generate the output based on that pair.

3.2 Editor

To edit a sentence according to a retrieved pair, we
propose an editor model consisting of two compo-
nents: 1) Edit Provider and 2) Edit Performer. The
Edit Provider computes a set of edit vectors based
on the retrieved pair of sentences (p, q). After that,
the Edit Performer rephrases the input sequence x
by utilizing this prepared set of edits.

3.2.1 Edit Provider

This part of the editor extracts the edits out of the
retrieved pair as a set of vectors called Micro Edit
Vectors (MEVs). In fact, MEVs are responsible
for encoding the information about the fine-grained
edits that transforms p to q. Each one of the MEVs
represents the most plausible soft alignments be-
tween a token in p and the semantically relevant
parts in q:

M = {mi := small edit applied on pi|1 i l}

where l is the length of p.

avoid

how can one overcome procrastination ? how should i avoid procrastination ?

Neural Network

Step 1:

Step 2:

(overcome avoid)

Compute
edit

Find the most
similar in target

Figure 2: The general scheme of computing a MEV
corresponding to a token of p.

Figure 2 illustrates the procedure of computing
one MEV schematically. For each arbitrary token
of p such as pi, we intend to compute a MEV that
encodes the edit corresponding to pi by using atten-
tion over q. Then, given pi as the source of the edit
and the attention’s result as the target, we concate-
nate their representations and feed it as the input to
a neural network which calculates mi as the corre-
sponding edit vector. To implement this procedure
in a differentiable and parallelizable manner, we
use a fully-attentional architecture consisting of
two modules. Figure 3 shows the overview of the
Edit Provider model.

https://tfhub.dev/google/universal-sentence-encoder-large/3
https://tfhub.dev/google/universal-sentence-encoder-large/3

In this model, at first, a context-aware repre-
sentation Rq = [r1q , ..., r

k
q] of the sequence q is

computed using the Target Encoder which is the
encoder sub-graph of the transformer architecture
Vaswani et al. (2017). The Edit Encoder is also
the encoder of the Transformer model, but, with an
extra multi-head attention over Rq. This module
outputs a vector that encodes the most semantically
relevant parts of q to pi. After that, the MEVs, i.e.
mis, are computed by feeding these vectors one by
one into a single dense layer (with the tanh(.) ac-
tivation function). By setting the output dimension
of the dense layer smaller than the dimension of the
word embeddings, we introduce a bottleneck which
hinders the Edit Encoder from copying q directly.

Dense Dense…

… …

Edit Encoder Target Encoder

…

Figure 3: Architecture of Edit Provider. The Edit En-
coder uses multi-head attention on Rq to select the tar-
get of edit for each token of p. Note that by prepending
[AGR] to p, we can encode all of the MEVS into a
single edit vector zp!q .

Finally, all of the MEVs are aggregated into a sin-
gle vector z by leveraging a technique inspired by
Devlin et al. (2019); we prepend a special token
[AGR] to p in order to encode all the edits into a
single vector zp!q too. We run the Edit Performer
with the same parameters in the reverse direction,
i.e. from q to p, to compute Rp and zq!p. The final
edit vector z is then computed as

z = Linear(zp!q � zq!p).

3.2.2 Edit Performer

The Edit Performer transforms the input sequence
x = [x1, ..., xs] to the final output ŷ using the edit
vectors. We employ a fully-attentional Seq2Seq
architecture composed of an encoder and a decoder

The encoder of the Edit Performer has exactly
the same architecture as the original encoder of the
Transformer model and outputs a context-aware
representation Rx = {rix}si=1 of the input sequence.
For the decoder, we use a slightly modified ver-
sion of the original Transformer’s decoder. In-
deed, the Transformer learns to models p(y|x),

Self Attention

Multi-Head Att
on Input

Multi-Head Att
on MEVs

Feed forwardMEVs

…

Contextual
Reprsentation

…

Decoder Output at (t-1)

Decoder Output at (t)

 Edit Vector ()

;

Input Sequence

Encoder

Figure 4: Illustration of the Edit Performer generating
the output token at t-th time step. Note that only one
layer of the decoder is depicted and the layernorms are
not shown for simplicity.

while we would like to model a conditional setting
p(y|x, (p, q)). Moreover, as mentioned in the de-
scription of the Edit Provider, the relation between
p and q is encoded in MEVs M and the vector z.
Therefore, in order to edit x, instead of using (p, q)
directly, we only need M and z to specify the edits,
and the sentence p to identify the locations in x to
which the edits should be applied. Thus, we aim to
model p(y|x, p,M, z) with the Edit Performer.

Figure 4 depicts the architecture of the Edit Per-
former. To condition the generation process on
the edit vector z, we append it to each token of
the decoder’s input. To apply the edits in a fine-
grained manner, we would like the model to attend
to the most similar token of p and select the cor-
responding edit in MEVs M to be applied to the
input sentence. Therefore, in addition to the input
sequence representation Rx, the model also attends
to MEVs M using an extra multi-head attention
sub-layer which computes the representation

h0 = MultiHeadAtt(Q: h,K: Rp,V: M),

where h comes from the previous sub-layer and
Rp is the context-aware representation of the re-
trieved sequence p which is calculated by the Edit
Provider. Hence, this sub-layer allows the model to
apply edits only when the current context matches
somewhere in p. Finally, we project h0 (after ap-
plying the residual connection and the layernorm)
using a fully-connected sub-layer and feed it to the
above layer. For the last layer, a softmax activation

is employed to predict the next token of the output.

3.3 Training

During the training phase, our aim is to maximize
the log likelihood objective

L =
X

(x,y)2D

log p(y|x). (2)

As we decompose the training procedure to two
stages of retrieving and editing, we can rewrite
p(y|x) as

p(y|x) =
X

(p,q)2D

p(y|x, (p, q))p((p, q)|x). (3)

Substituting Eq. 1 into Eq. 3 and then inserting
the resulted p(y|x) into Eq. 2 yields the following
formulation for the log likelihood

L =
X

(x,y)2D

log(
1

K

X

(p,q)2N (x)

p(y|x, (p, q))).

We train our model by maximizing the following
lower bound of the log likelihood (obtained by
Jenssen inequality)

L � L0 =
1

K

X

(x,y)2D

X

(p,q)2N (x)

log p(y|x, (p, q)).

Note that p(y|x, (p, q)) =
p✓(y|x, p,m�(p, q), z�(p, q)) where ✓ denotes the
parameters of the Edit Performer and � shows the
parameters of the Edit Provider. Thus, we solve
the following problem

✓⇤,�⇤ = argmax
✓,�

L0(✓,�).

Except for the retriever which is a pre-trained
component of our model, other components are
fully coupled and trained together. To prevent the
model from ignoring the information coming from
the retrieval pathway during the training procedure,
we use a simple yet effective trick. We add extra
(x, y) pairs to N (x) proportionate to the number of
retrieved pairs K so the presence of y as the exact
ground-truth paraphrase encourages the model to
use the retrieved pairs more.

4 Experiments

In this section, we empirically evaluate the ef-
fectiveness of our proposal method for the task
of paraphrase generation and compare it against
many methods including the previous state-of-the-
art paraphrasing models.

4.1 Datasets

We conduct experiments on two of the most widely
used datasets for paraphrase generation: the Quora
question pair dataset and the Twitter URL para-
phrasing corpus. For the Quora dataset, we only
consider the paraphrase pairs. Similar to Li et al.
(2018), we sample 100k, 30k, 3k instances for train,
test, and validation sets respectively. Twitter URL
paraphrasing dataset consists of two subsets, one
is labeled by human annotators and the other is
labeled automatically, thus, it is noisier compared
to the Quora dataset. Similar to Li et al. (2018), we
sample 110k instances from automatically labeled
part as our training set and two non-overlapping
subsets of 5k and 1k instances from the part an-
notated by humans for the test and validation sets
respectively. As in Li et al. (2018, 2019), we trun-
cate sentences in both of the datasets to 20 tokens.

Hyperparameter Edit Performer Edit Provider

Hidden dimension 64 64
Layers 6 4
Heads 8 4
MEV dimension mi - 40
Edit vector z dimension - 64

Table 1: Settings of the Model

4.2 Baselines

We compare our method with both the existing
paraphrasing methods, that are not retrieval-based,
and also with the existing or designed retrieval-
based text generation methods which we adapt for
paraphrasing:

• Non-retrieval paraphrasing methods:

– Residual LSTM (Prakash et al., 2016)
which is the first Seq2Seq model proposed
for paraphrase generation,

– RbM (Li et al., 2018) that fine-tunes a para-
phrase generation model using reinforce-
ment learning,

– Transformer (Vaswani et al., 2017) which
is a Seq2Seq model relying entirely on at-
tention mechanism,

– DNPG (Li et al., 2019) that decomposes
paraphrasing to sentential and phrasal levels
and utilizes separate Transformers for each
level,

– DiPS (Kumar et al., 2019) which aims to
generate diverse paraphrases by adopting a
novel approach in the decoding stage instead
of beam search.

The latter two of the above list have been reported
as the state-of-the-art models in paraphrase gen-
eration Kumar et al. (2019); Li et al. (2019).

• Retrieval-based models: We compare our
method with one existing retrieval-based text gen-
eration model and two other combinational meth-
ods that we design:

– Seq2Seq+Ret which is an extended version
of Seq2Seq Residual LSTM that also con-
ditions the generation process at each time
step on an edit vector encoding the differ-
ences between the retrieved sentences p and
q. To make the comparison fair, we use
the General Retriever (introduced in the Re-
triever subsection of the Proposed Approach
Section) to find (p, q). The edit vector for
this pair is also computed by concatenating
the sum of inserted word embeddings with
the sum of deleted word embeddings as it is
stated in Guu et al. (2018).

– RaE that is proposed by Hashimoto et al.
(2018) as a method with an in-domain re-
triever. The editor of this model is a Seq2Seq
LSTM equipped with attention mechanism
over the input x and copy mechanism over
the retrieved pair p and q.

– CopyEditor+Ret which is composed of the
editor of Hashimoto et al. (2018) and the
General Retriever. We designed this base-
line model to further evaluate the role of our
proposed editor.

4.3 Experimental settings

Table 1 shows the settings of our model. We select
the hyperparameters suggested by Li et al. (2018)
for the LSTM-based Seq2Seq baselines and the
hyperparameters mentioned by Li et al. (2019) for
the Transformer-based baselines. It is worth noting
that our model’s size w.r.t. the number of param-
eters is approximately 1

2 of the baseline LSTM’s
size and 1

5 of the baseline Transformer’s size. The
designed retrieval-based baselines have the same
hidden size and the same number of layers as the
non-retrieval counterparts. For the Seq2Seq+Ret
model, we keep the ratio of hidden size to the edit
vector dimension same as the reported ratio in Guu
et al. (2018). We train all the models for 100k iter-
ations and choose the best version based on their

1Results are directly reported from Li et al. (2018, 2019)
on the same dataset and settings.

validation loss after training. We set the batch size
to 128 and the vocabulary size to 8k in all of the ex-
periments. The embeddings are also allowed to be
trained from scratch. In all of the experiments on
the retrieval-based methods, the hyper-parameter
K is set to 1. However, results for different values
of K are also shown in the Appendix. During the
decoding stage, we use beam search to generate a
set of outputs. In order to select the final output,
an approach similar to Gupta et al. (2018) is used
which chooses the most lexically similar sentence
to the input where the similarity is calculated based
on the Jaccard measure.

4.4 Results and analysis

We compare the different methods using BLEU
Papineni et al. (2002), ROUGE Lin (2004), and
METEOR Banerjee and Lavie (2005) as the most
common metrics for automatic evaluation of para-
phrase generation methods. Table 2 summarizes
the results of different methods. These results indi-
cate that our model outperforms the previous state-
of-the-art models in terms of all of the metrics.

It is worth noting that the models which have
utilized copy mechanism such as DNPG, RbM,
RaE, and CopyEditor+Ret generally outperforms
the other baselines. The Seq2Seq+Ret, i.e. the
retrieval-based Residual LSTM, shows an improve-
ment over Residual LSTM on Quora dataset. How-
ever, this is not the case on the Twitter dataset
and we hypothesize that it is due to uncommon
texts in this corpus (i.e. informal text with hash-
tags and abbreviated words), on which the General
Retriever has not been trained. Therefore, a pre-
trained retriever cannot help in this case. The Copy-
Editor+Ret model which incorporates a more pow-
erful editor than Seq2Seq+Ret shows better results
than both of the Residual LSTM and Seq2Seq+Ret.
However, a similar phenomenon to what was stated
for Seq2Seq+Ret is also observed for this model
on the Twitter dataset. The RaE model with the
same editor as CopyEditor but with a supervised
(task-specific) retriever leads to near state-of-the-
arts results. This indicates the role of the supervised
task-specific retriever used in RaE especially in the
results on Twitter dataset. The superiority of our
method over RaE in all of the metrics could be
a sign of the effectiveness of our proposed editor
model. Although our model uses the General Re-
triever, it still outperforms all other methods even
on the Twitter dataset. It is worth mentioning that

Quora Twitter URL Paraphrasing

Models ROUGE-2 ROUGE-1 BLEU-4 BLEU-2 METEOR ROUGE-2 ROUGE-1 BLEU-4 BLEU-2 METEOR

Residual LSTM (Prakash et al., 2016) 32.71 59.69 24.56 38.52 29.39 27.94 41.77 25.92 32.13 24.88
Seq2Seq+Ret (Ours) 32.71 60.83 25.23 42.71 32.51 21.56 40.18 20.11 31.58 22.38
DiPS (Kumar et al., 2019) 31.77 59.79 25.37 40.35 29.28 23.67 43.64 27.66 37.92 25.69
Transformer (Vaswani et al., 2017) 34.23 61.25 30.38 42.91 34.65 29.55 44.53 32.14 40.34 28.26
DNPG (Li et al., 2019) 2 37.75 63.73 25.03 - - - - - - -
RbM (Li et al., 2018) 2 38.11 64.39 - 43.54 32.84 24.23 41.87 - 44.67 19.97
RaE (Hashimoto et al., 2018) 35.07 62.71 29.22 46.21 29.92 31.53 47.55 34.16 44.33 30.09
CopyEditor+Ret (Ours) 35.59 62.93 29.78 46.55 35.56 27.35 45.54 28.06 40.30 26.93

FSET (Ours) 39.55 66.17 33.46 51.03 38.57 32.04 49.53 34.62 46.35 31.67

Table 2: Results of the different models on two paraphrasing datasets.

Grammar Coherency

Models Score Score

DiPS (Kumar et al., 2019) 3.97 0.253 2.55 0.476
RaE (Hashimoto et al., 2018) 4.70 0.286 3.90 0.483
FSET (Ours) 4.70 0.394 4.22 0.528

Table 3: Human evaluation on Quora dataset.

we can replace the General Retriever in our method
with other retrievers like supervised task-specific
ones to improve the results even more. Moreover,
it is worth to note that our model that is only based
on the Transformer architecture and the General
Retriever (that is not required to be trained in each
domain) needs much less training time than RaE.

4.5 Human evaluation

As there is no appropriate automatic metric for
evaluating the diversity and novelty of generated
sentences, we use human evaluation to assess the
performance of our model qualitatively. We com-
pare our method against two other methods: 1)
RaE Hashimoto et al. (2018) as a retrieval-based
method adapted for paraphrasing and 2) DiPS Ku-
mar et al. (2019) as a paraphrasing model which
generates semantically diverse outputs by adopt-
ing a novel approach during the decoding stage
instead of beam search. We choose these models
as we would like to compare our method both with
a state-of-the-art retrieval-based method and with a
method that can generate diverse outputs. It must
be noted that many of the recent methods in Table
2 are not able to generate diverse outputs.

We first select 100 sentences randomly from the
test set of Quora dataset. Then, for each model,
three paraphrases are generated for each one of the
sentences and these three outputs are considered as
a paraphrase group. We aggregate and shuffle these
paraphrase groups and ask six human annotators to

Tie: 23.0%

0.373

RaE: 20.6%

FSET (Ours): 57.0%

FSET Tie RaE

Tie: 13.3%

0.430

DiPS: 11.3%

FSET (Ours): 75.3%

FSET Tie DiPS

Tie: 28%

0.331

DiPS: 15.3%

RaE: 56.6%

RaE Tie DiPS

FSET vs. RaE FSET vs. DiPS RaE vs. DiPS

Figure 5: Results of the side-by-side human evaluation
(second experiment). Annotators decide ”Tie” when
the outputs of the two models have the same quality in
their opinion.

evaluate them in two scenarios.
In the first scenario, we ask the human anno-

tators to score the outputs individually based on
the following two criteria: 1) Grammar and flu-
ency, 2) Consistency and coherency. Similar to
Li et al. (2018), we use a 5-scale rating for each
criterion. Table 3 presents the results. As can be
seen, our model generally outperforms the other
methods. Although RaE and our model can both
produce grammatical outputs, the consistency and
coherency for the outputs of our method is much
better. Moreover, inter-annotator agreement mea-
sured by Cohen’s kappa shows fair or intermedi-
ate agreement between raters assessing the models.

We design the second scenario to compare the re-
sults of these methods against one another. In fact,
since directly scoring the diversity and novelty of
one paraphrase group is not simple even for human,
we ask the human annotators to do a side-by-side
comparison on the groups of generated paraphrases.
In other words, they have to decide which model
produces better outputs for each sentence (Ties are
also allowed). Figure 5 depicts the side-by-side
diversity evaluation. Our method and RaE both
outperform DiPS probably due to their retrieval-

(1) x Why do people ask such questions here on Quora which could be easily
found on the internet ?

p Why do people ask questions on Quora that could simply be googled?
q why do people ask questions on quora that are easily answerable via a

quick internet search ?

y0 why do people ask questions on quora that could be easily answered
by using a quick internet search ?

(2) x Who can the Democrats effectively run against Trump in 2020 ?
p Who will lead Trump ’s movement after the election ?
q Who do you think is most likely to lead the Trump movement after 2016

?

y0 who do you think is the most likely democrat to
run against trump in 2020 ?

(3) x What is the best way to make money as a 15 year old ?
p What are the best ways to make money as a teenager ?
q I ’m a teen , how can I make some money online ?

y0 I ’m a 15 year old , how can I make money ?

Table 4: Example outputs of the model. Red phrases
are extracted from the retrieved target sentence q and
blue parts are extracted from the source sentence x.
Phrases that appear with slight changes in semantics
or syntax in the output are made bold.

Model Variant ROUGE-2 ROUGE-1 BLEU-4 BLEU-2

Jaccard Retriever 38.52 65.47 31.72 48.83
No edit vector z 38.31 65.44 30.40 47.77
No Attention on MEVs M 39.36 65.72 29.73 46.66

Table 5: Ablation study

based nature. Moreover, Figure 5 reveals that our
method is significantly preferred to RaE. We be-
lieve that RaE’s editor is not as properly designed
as our editor model. We explicitly inject the para-
phrasing patterns in the neighborhood paraphrases
into the Edit Performer and help it to generate more
diverse paraphrases. Please refer to the Appendix
for some further details of the experiments.

4.6 Case study

Table 4 illustrates some examples of the para-
phrases generated by our model. A common pat-
tern among the output paraphrases is that the model
has combined different parts of the input sentence
and the retrieved target sentence to create a well-
formed grammatical paraphrase. The model can
also change the syntactic form of words correctly
or replace them with their synonyms as it is the
case for ”via” and ”by using” and ”is” and ”are”.
The fact that the model can apply these changes in
different levels of granularity can be a sign that the
idea of editing based on MEVs works properly.

4.7 Model Ablation

In order to further evaluate the role of each module
in our model, we train and assess different variants

of it where for each variant, a component has been
replaced by an alternative simpler one:

• Jaccard Retriever: The retriever of our model is
replaced by a simple retriever that selects neigh-
bor sentences using Jaccard similarity measure.

• No edit vector z: A variant in which we do
not condition the Transformer (in the Edit Per-
former) on the aggregated edit vector z and edit
the source sentence merely based on MEVs.

• No Attention on MEVs: In this variant of our
model, the Transformer (in the Edit Performer)
is not conditioned on MEVs and the source sen-
tence is edited based on only z.

We train all of these variants on the Quora para-
phrasing dataset. Table 5 shows the results of these
models. As it is seen, the model which uses Jaccard
similarity measure performs worse than the orig-
inal model with the General Retriever. Nonethe-
less, the results of this version explains that even
the combination of our editor model with this sim-
ple retriever outperforms previous state-of-the-art
methods. This indicates the fact that our proposed
editor can distinguish whether the extracted edits
are plausible enough to be applied to the input sen-
tence. Moreover, the results indicates that both
eliminating z and M from our editor decrease its
performance. Indeed, both conditioning on z as
aggregated edits at each step of generation and the
attention on MEVs M help the proposed editor.

5 Conclusion

In this paper, we proposed a retrieval-based para-
phrase generation model using a novel fully-
attentional editor. This editor learns how to extract
edits from a paraphrase pair and also when and how
to apply these edits to a new input sentence. We
presented a conditional transformer for this purpose
that can learn a mapping from the input sentence
to the output sentence which can be affected by
discovered edits from the neighboring paraphrase
pairs. The proposed model outperforms the previ-
ous state-of-the-art paraphrase generation models
in terms of both automatic metrics and human eval-
uation. Moreover, the outputs show that our model
can produce paraphrases by editing sentences in a
fine-grained manner using the idea of MEVs. In
future work, we intend to adapt our editor model
for other learning tasks with both the structured
input and structured output.

References

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Ar-
bor, Michigan. Association for Computational Lin-
guistics.

Colin Bannard and Chris Callison-Burch. 2005. Para-
phrasing with bilingual parallel corpora. In Proceed-
ings of the 43rd Annual Meeting of the Association
for Computational Linguistics (ACL’05), pages 597–
604, Ann Arbor, Michigan. Association for Compu-
tational Linguistics.

Jonathan Berant and Percy Liang. 2014. Semantic pars-
ing via paraphrasing. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1415–
1425, Baltimore, Maryland. Association for Compu-
tational Linguistics.

Ziqiang Cao, Chuwei Luo, Wenjie Li, and Sujian Li.
2017. Joint copying and restricted generation for
paraphrase.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Con-
stant, Mario Guajardo-Cespedes, Steve Yuan, Chris
Tar, Yun-Hsuan Sung, Brian Strope, and Ray
Kurzweil. 2018. Universal sentence encoder. CoRR,
abs/1803.11175.

Mingda Chen, Qingming Tang, Sam Wiseman, and
Kevin Gimpel. 2019. Controllable paraphrase gen-
eration with a syntactic exemplar. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5972–5984, Florence,
Italy. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni.
2014. Open question answering over curated and ex-
tracted knowledge bases. In Proceedings of the 20th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’14, pages
1156–1165, New York, NY, USA. ACM.

Jiatao Gu, Yong Wang, Kyunghyun Cho, and Vic-
tor O. K. Li. 2017. Search engine guided non-
parametric neural machine translation. CoRR,
abs/1705.07267.

Ankush Gupta, Arvind Agarwal, Prawaan Singh, and
Piyush Rai. 2018. A deep generative framework for
paraphrase generation.

Kelvin Guu, Tatsunori B. Hashimoto, Yonatan Oren,
and Percy Liang. 2018. Generating sentences by
editing prototypes. Transactions of the Association
for Computational Linguistics, 6:437–450.

Tatsunori B. Hashimoto, Kelvin Guu, Yonatan Oren,
and Percy Liang. 2018. A retrieve-and-edit frame-
work for predicting structured outputs. In Proceed-
ings of the 32Nd International Conference on Neu-
ral Information Processing Systems, NIPS’18, pages
10073–10083, USA. Curran Associates Inc.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1875–1885, New
Orleans, Louisiana. Association for Computational
Linguistics.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017.
Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734.

Tomoyuki Kajiwara. 2019. Negative lexically con-
strained decoding for paraphrase generation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6047–
6052, Florence, Italy. Association for Computa-
tional Linguistics.

Ashutosh Kumar, Satwik Bhattamishra, Manik Bhan-
dari, and Partha Talukdar. 2019. Submodular
optimization-based diverse paraphrasing and its ef-
fectiveness in data augmentation. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
and Short Papers), pages 3609–3619, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

Zichao Li, Xin Jiang, Lifeng Shang, and Hang Li.
2018. Paraphrase generation with deep reinforce-
ment learning. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 3865–3878, Brussels, Belgium.
Association for Computational Linguistics.

Zichao Li, Xin Jiang, Lifeng Shang, and Qun Liu.
2019. Decomposable neural paraphrase generation.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
3403–3414, Florence, Italy. Association for Compu-
tational Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

https://www.aclweb.org/anthology/W05-0909
https://www.aclweb.org/anthology/W05-0909
https://www.aclweb.org/anthology/W05-0909
https://doi.org/10.3115/1219840.1219914
https://doi.org/10.3115/1219840.1219914
https://doi.org/10.3115/v1/P14-1133
https://doi.org/10.3115/v1/P14-1133
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14527
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14527
http://arxiv.org/abs/1803.11175
https://www.aclweb.org/anthology/P19-1599
https://www.aclweb.org/anthology/P19-1599
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/2623330.2623677
https://doi.org/10.1145/2623330.2623677
http://arxiv.org/abs/1705.07267
http://arxiv.org/abs/1705.07267
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16353
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16353
https://doi.org/10.1162/tacl_a_00030
https://doi.org/10.1162/tacl_a_00030
http://dl.acm.org/citation.cfm?id=3327546.3327670
http://dl.acm.org/citation.cfm?id=3327546.3327670
https://doi.org/10.18653/v1/N18-1170
https://doi.org/10.18653/v1/N18-1170
https://www.aclweb.org/anthology/P19-1607
https://www.aclweb.org/anthology/P19-1607
https://doi.org/10.18653/v1/N19-1363
https://doi.org/10.18653/v1/N19-1363
https://doi.org/10.18653/v1/N19-1363
https://doi.org/10.18653/v1/D18-1421
https://doi.org/10.18653/v1/D18-1421
https://www.aclweb.org/anthology/P19-1332
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013

Jonathan Mallinson, Rico Sennrich, and Mirella Lap-
ata. 2017. Paraphrasing revisited with neural ma-
chine translation. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 1, Long Pa-
pers, pages 881–893, Valencia, Spain. Association
for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Aaditya Prakash, Sadid A. Hasan, Kathy Lee, Vivek
Datla, Ashequl Qadir, Joey Liu, and Oladimeji Farri.
2016. Neural paraphrase generation with stacked
residual LSTM networks. In Proceedings of COL-
ING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pages
2923–2934, Osaka, Japan. The COLING 2016 Orga-
nizing Committee.

Yiping Song, Rui Yan, Xiang Li, Dongyan Zhao, and
Ming Zhang. 2016. Two are better than one: An
ensemble of retrieval- and generation-based dialog
systems. CoRR, abs/1610.07149.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Su Wang, Rahul Gupta, Nancy Chang, and Jason
Baldridge. 2019. A task in a suit and a tie: Para-
phrase generation with semantic augmentation. Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, 33(01):7176–7183.

Yu Wu, Furu Wei, Shaohan Huang, Yunli Wang, Zhou-
jun Li, and Ming Zhou. 2019. Response generation
by context-aware prototype editing. Proceedings
of the AAAI Conference on Artificial Intelligence,
33(01):7281–7288.

https://www.aclweb.org/anthology/E17-1083
https://www.aclweb.org/anthology/E17-1083
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://www.aclweb.org/anthology/C16-1275
https://www.aclweb.org/anthology/C16-1275
http://arxiv.org/abs/1610.07149
http://arxiv.org/abs/1610.07149
http://arxiv.org/abs/1610.07149
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.1609/aaai.v33i01.33017176
https://doi.org/10.1609/aaai.v33i01.33017176
https://doi.org/10.1609/aaai.v33i01.33017281
https://doi.org/10.1609/aaai.v33i01.33017281

A Appendix

A.1 Analysis of Varying K

We conduct an experiment to evaluate the effect of
the hyper-parameter K in the proposed method.
For each value of K 2 {1, 3, 5}, we train our
model once and obtain its results on the Quora
dataset. Then, the value of two quality metrics (i.e.
BLUE-2 and ROUGE-2) and two diversity metrics
(i.e. SelfBLEU-2 And PINC-4) are computed. Fig-
ure 1 summarizes the obtained results. According
to this figure, increasing the value of K slightly de-
creases the quality metrics while highly increases
the diversity measures (Note that lower values of
SELf-BLEU and higher values of PINC indicate
more diversity in the outputs). It shows that incor-
porating wider neighborhood in the editing process
results in more diversity in the paraphrasing made
by the editor.

Figure 1: Results of the proposed method with some
different values of the hyperparameter K according to
four different metrics

A.2 Human Evaluation

The form used for the side-by-side experiment con-
tains the following material:

Which set of the outputs do you prefer? Please
opt based on the following criteria:

• Novelty: If any one of the outputs has ex-
pressed the semantic content of source sen-
tence in a novel way like what we do as hu-
mans (e.g. changing the voice from active to
passive or vice versa, using different words,
phrases, or sentences that are not present in
the source sentence but without changing the
meaning considerably)

• Diversity: if the three outputs are not ex-
pressed in the same way using the same words

• Quality: If the outputs are paraphrases of the
input sentence to a good extent.

• Readability: If the outputs are understadable
by humans

Note: Please select the option ’both(#1 and #2)’ if
you can not decide which one is better.

Figure 2: The human evaluation form for the first ex-
periment.

Figure 3: The human evaluation form for the second
experiment.

A.3 Example outputs

Table 1 shows the paraphrases generated fomr ome
sample inputs in the Quora dataset.

(1) x What are great examples of absent mindedness ?
p What are the common characteristics of ignorant people ?
q What are the most common characteristics of stupid , ignorant or une-

ducated people ?

y0 what are the most common examples of absent mindedness ?

(2) x What should I know about moving from Pennsylvania to South Car-
olina ?

p What are the pros and cons of living in Richmond , VA ?
q What is your review of Richmond , VA ?

y0 what is your review of moving from pennsylvania to south carolina ?

(3) x How does Quora determine how many views an answer gets ?
p How does Quora calculate how many views does an answer have ?
q How does Quora count the views of my / your answers ?

y0 how does quora determine the views of your answers ?

(4) x Do you think India should revisit Indus Water Treaty with Pakistan ?
p Should India hold a referendum in Kashmir ?
q Would India ever consider a referendum for Kashmir independence ?

y0 would india ever consider a indus water treaty with pakistan ?

(5) x Which is your favourite time of the day ?
p What is your favorite month of the year ?
q What is your favorite month of the year and why ?

y0 what is your favourite time of the day and why ?

(6) x How do I homeschool my kids ?
p How do I teach my child ?
q What are the best ways to teach your child ?

y0 what are the best ways to homeschool my child ?

(7) x How did Andy Warhol paint Marilyn Monroe ?
p Who was Mona Lisa and why was she painted ?
q What is story behind mona lisa painting ?

y0 what is the story behind andy warhol paint marilyn monroe ?

(8) x Can we start a Sainik School in the private sector ?
p Is n’t it time for Indian goverment to change its reservation system for

jobs and education from caste based to economic based system ?
q Is n’t it time India change its reservation policies from implemented

on caste basis to based on financial backgrounds ?

y0 is it possible to start a sainik school in the private sector ?

(9) x Can we start a Sainik School in the private sector ?
p Should the Indian education system be revamped ?
q Does the Indian education system need to change and why ?

y0 does the indian government need to start a sainik school in the private
sector ?

(10) x What is the best thing any one has ever done for you ?
p What is the nicest thing anyone has ever done for you ?
q What ’s the nicest thing anyone has ever done for you ?

y0 what ’s the best thing that has ever done for you ?

(11) x What are some of the things people like or dislike in general ?
p What are some things that you hate ?
q What are some things that irritate you and that you hate ?

y0 what are some things that most people dislike in general ?

Table 1: More examples of our model’s outputs

