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Problem Definition 

• Deep learning successes have required a lot of labeled training data  

• Constructing such huge datasets, Requires significant amount of 
work and money. 

But: 

• Humans learn new concepts using just few examples 

• Prior experience plays a key role in human’s learning. 

• Humans know how to learn!
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Few-shot learning (FSL) refers to  

The training of machine learning algorithms using a very 

small set of training data (e.x. 1 sample per each class)
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How to “few-shot learning” ?
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How to “few-shot learning” ?

1. Data Augmentation  

2. Meta Learning
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Image Credit: Ke Li in learning to optimize �17
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• Meta-learning = learning to learn 

• If you’ve learned 100 tasks already, can you figure out how to learn 
more efficiently?  

• Prior experience on “learning” helps to learn new tasks much faster! 

• Very close to multi-task learning and transfer-learning 

• Many Formulations

What is Meta-learning?
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Harlow Experiment
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RNN-based Meta-learning
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Model Agnostic Meta-learning (MAML)

Two main Component: 

• Meta-learnee, Classifier (C), f(x, θ) -> y 

• Meta-learner, Teacher, Learning Procedure  (T) 
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Model Agnostic Meta-learning (MAML)
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Model Agnostic Meta-learning (MAML)
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Model Agnostic Meta-learning (MAML)

Meta-learner θ
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Model Agnostic Meta-learning (MAML)

fθ : Generic model parametrized by θ (aka meta − learner)

θ : original paramters

θ′� : task − specific paramters

Ti = (𝒟train, 𝒟test)
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Model Agnostic Meta-learning (MAML)
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Data Augmentation
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Future Works

Fewshot learning in NLP 

• Data Augmentation 

• MAML  

• Pre-trained Language Models (e.x. ULMFiT, Google Bert)
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Thank you!


