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Problem Definition

* Deep learning successes have required a lot of labeled training data

* Constructing such huge datasets, Requires significant amount of
work and money.

But:
* Humans learn new concepts using just few examples
* Prior experience plays a key role in human's learning.

e Humans know how to learn!



Few-shot learning (FSL) refers to

The training of machine learning algorithms using a very

small set of training data (e.x. 1 sample per each class)
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How to “few-shot learning” ?

1. Data Augmentation

2. Meta Learning
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What is Meta-learning?

e Meta-learning = learning to learn

e |fyou've learned 100 tasks already, can you figure out how to learn
more efficiently?

e Prior experience on “learning” helps to learn new tasks much faster!

e Very close to multi-task learning and transfer-learning
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FSL / Solutions /

Follow the
gradient

Gradient
Descent

oscillating...
what do | do?

Learned 49
. . \\ 4-
Optimizer ‘ ®

Aha! I've seen
this before...

Image Credit: Ke Li in learning to optimize
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https://bair.berkeley.edu/blog/2017/09/12/learning-to-optimize-with-rl/

What is Meta-learning?

* Meta-learning = learning to learn

* |fyou've learned 100 tasks already, can you figure out how to learn
more efficiently?

* Prior experience on “learning” helps to learn new tasks much faster!
* Very close to multi-task learning and transfer-learning

* Many Formulations
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Harlow Experiment
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Harlow Experiment
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Harlow Experiment
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FSL / Solutions / Meta Learning

Harlow Experiment
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RNN-based Meta-learning
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RNN-based Meta-learning

(xla yl)

(X2, ¥2)

(X3, )’3)

test
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RNN-based Meta-learning

]

training set === [ (Xl,yl) (x29y2) (x3a)73) ]

test
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RNN-based Meta-learning
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RNN-based Meta-learning

Viest

|

T

training set === [ (xl,yl) (Xza)’z) (x3a)73) ]

supervised learning: f(z) — y

[\

input (e.g., image) output (e.g., label)

T

test

<4--- test label

<4--- test input
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RNN-based Meta-learning

Yiost <--- test label

|
T T

training set === [ (xl,yl) (xzaYQ) (X3,)73) ] Xiost <--- test input
supervised learning: f(z) — y supervised meta-learning: f(Dtrain, T) — Y
input (e.g., image) output (e.g., label) training set
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Model Agnostic Meta-learning (MAML)

30



Model Agnostic Meta-learning (MAML)

Two main Component:

31



Model Agnostic Meta-learning (MAML)

Two main Component:

* Meta-learnee, Classifier (C), f(x, 8) ->y
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Model Agnostic Meta-learning (MAML)

Two main Component:
* Meta-learnee, Classifier (C), f(x, 8) ->y

* Meta-learner, Teacher, Learning Procedure (T)
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Model Agnostic Meta-learning (MAML)
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Model Agnostic Meta-learning (MAML)
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Model Agnostic Meta-learning (MAML)

classifier

T1 — (@tlmin, @tlest)

T2 — (@tzmin, @tzest)

classifier
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Model Agnostic Meta-learning (MAML)
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Model Agnostic Meta-learning (MAML)
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Model Agnostic Meta-learning (MAML)
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Model Agnostic Meta-learning (MAML)
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Model Agnostic Meta-learning (MAML)
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Model Agnostic Meta-learning (MAML)
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Model Agnostic Meta-learning (MAML)

fo : Generic model parametrized by 0 (aka meta — learner)

0 : original paramters

0’ : task — specific paramters

T — (@tmin gtest)

1: randomly initialize 6
2: while not done do

3:

4
5:
6

o e

Sample batch of tasks 7; ~ p(T)

for all 7; do
Evaluate Vo L7 ( fy) with respect to K examples
Compute adapted parameters with gradient de-
scent: 0, = 60 — aVoL7 (fo)

end for

Update 0 <= 60 — 8V 3 1 ) £7: (fo)

. end while
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Model Agnostic Meta-learning (MAML)
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Data Augmentation
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Data Augmentation

(a) Training phase: (b) Sample synthesis phase:

X* X* ys

Encoder Encoder

Decoder Decoder




Future Works

Fewshot learning in NLP
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Future Works

Fewshot learning in NLP

* Data Augmentation

 MAML

* Pre-trained Language Models
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Thank you!



