

Few-shot Learning

- Deep learning successes have required a lot of labeled training data
- Constructing such huge datasets, Requires significant amount of work and money.

- Deep learning successes have required a lot of labeled training data
- Constructing such huge datasets, Requires significant amount of work and money.

But:

Humans learn new concepts using just few examples

- Deep learning successes have required a lot of labeled training data
- Constructing such huge datasets, Requires significant amount of work and money.

But:

- Humans learn new concepts using just few examples
- Prior experience plays a key role in human's learning.

- Deep learning successes have required a lot of labeled training data
- Constructing such huge datasets, Requires significant amount of work and money.

But:

- Humans learn new concepts using just few examples
- Prior experience plays a key role in human's learning.
- Humans know how to learn!

Few-shot learning (FSL) refers to

The training of machine learning algorithms using a very small set of training data (e.x. 1 sample per each class)

1. Data-level Approach

- 1. Data-level Approach
- 2. Parameter-level Approach

- 1. Data-level Approach
- 2. Parameter-level Approach

- 1. Data Augmentation
- 2. Meta Learning

Meta-learning = learning to learn

- Meta-learning = learning to learn
- If you've learned 100 tasks already, can you figure out how to learn more efficiently?

- Meta-learning = learning to learn
- If you've learned 100 tasks already, can you figure out how to learn more efficiently?
- Prior experience on "learning" helps to learn new tasks much faster!

- Meta-learning = learning to learn
- If you've learned 100 tasks already, can you figure out how to learn more efficiently?
- Prior experience on "learning" helps to learn new tasks much faster!
- Very close to multi-task learning and transfer-learning

- Meta-learning = learning to learn
- If you've learned 100 tasks already, can you figure out how to learn more efficiently?
- Prior experience on "learning" helps to learn new tasks much faster!
- Very close to multi-task learning and transfer-learning
- Many Formulations

supervised learning:
$$f(x) \to y$$

f \(\frac{1}{2} \)

input (e.g., image) output (e.g., label)

 $f(x) \to y \qquad \text{supervised meta-learning: } f(\mathcal{D}_{\text{train}}, x) \to y$ $f(x) \to f(x)$ input (e.g., image) output (e.g., label) $f(x) \to f(x)$ training set

Two main Component:

Two main Component:

Meta-learnee, Classifier (C), f(x, θ) -> y

Two main Component:

- Meta-learnee, Classifier (C), f(x, θ) -> y
- Meta-learner, Teacher, Learning Procedure (T)

 f_{θ} : Generic model parametrized by θ (aka meta – learner)

 θ : original paramters

 θ' : task – specific paramters

$$T_i = (\mathcal{D}^{train}, \mathcal{D}^{test})$$

- 1: randomly initialize θ
- 2: while not done do
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do
- 5: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples
- 6: Compute adapted parameters with gradient descent: $\theta'_i = \theta \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
- 7: **end for**
- 8: Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$
- 9: end while

Data Augmentation

Data Augmentation

(a) Training phase:

(b) Sample synthesis phase:

Future Works

Fewshot learning in NLP

Future Works

Fewshot learning in NLP

- Data Augmentation
- MAML
- Pre-trained Language Models (e.x. ULMFiT, Google Bert)

Thank you!